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ABSTRACT

This paper presents a fundamental understanding regarding
the effect that transmitting power has on the capacity of
wireless ad hoc networks. Under the assumption that all
interference is essentially regarded as noise, we carry out
a quantitative analysis from the perspective of information
theory. First, we answer the question, “How much informa-
tion can be carried per unit bandwidth over a wireless ad
hoc network under a certain power assignment and nodal
distribution?” We then prove that the maximum network
capacity, whether in bps (bits per second) or in bmps (bit-
meters per second), strictly increases with respect to the to-
tal transmitting power under a fixed-proportion assignment,
and that there is a limit as the total transmitting power goes
to infinity. We further conclude that the maximum power
efficiency, whether in bpJ (bits per Joule) or in bmpJ (bit-
meters per Joule), strictly decreases with respect to the to-
tal transmitting power under a fixed-proportion assignment.
We also show that the maximum network capacity, whether
in bps or in bmps, follows an O(n) scaling law, where n is the
number of nodes, which coincides with previous asymptotic
conclusions. Finally, we highlight the practical implications
of the results for power allocation, power assignment, and
transmission scheduling. The contributions of this paper
may be worthy of consideration by wireless network design-
ers.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication
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1. INTRODUCTION
Power control plays an important role in improving the

capacity of wireless ad hoc networks. A significant amount
of research has been devoted to power control and capac-
ity analysis in recent years. However, there is still limited
knowledge regarding how transmitting power effects network
capacity. This paper provides a quantitative analysis.

Gupta and Kumar [5] presented their seminal work on ca-
pacity analysis. Their results, and the majority of previous
results [7, 8, 11, 18, 21], are based on asymptotic analysis,
which yields limited information regarding understanding
the exact capacity of a wireless ad hoc network composed of
a certain number of nodes - particularly when the number is
small. Narayanaswamy et al. [14] conducted a preliminary
investigation regarding the effect that transmission power
has on network capacity under a common-range model. It is
concluded that the throughput capacity decreases as trans-
mission power increases. On the contrary, Behzad and Ru-
bin [1] concluded that higher transmission power results in
increased capacity. Xie and Kumar [22] further developed
an information theory to examine the capacity of wireless
ad hoc networks, independent of networking protocols. But
their results have a more theoretical than practical meaning.
Rodoplu and Meng [17] proposed bits-per-Joule capacity in
consideration of energy efficiency. Wang et al. [20] studied
the energy efficiency of random wireless ad hoc networks.
However, neither [17] nor [20] carried out a quantitative
analysis. In summary, most previous results are asymptotic
or qualitative, and hence have limited applicability in prac-
tice.

In this paper, we provide a quantitative analysis of the
effect that transmitting power has on the capacity of wire-
less ad hoc networks. Our analysis is based on the assump-
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tion that all interference is essentially regarded as noise. It
should be noted that interference is not noise, but informa-
tion from the perspective of information theory. Some MAC
protocols, CSMA for example, are capable of taking care of
interference to some extent. However, for on-going transmis-
sions, it is too difficult for a receiver to distill information
from interference in real systems. This paper is concerned
with the effect of transmitting power on network capacity at
a certain time. Although how to utilize interference is not
taken into account, the results of this paper can be used to
evaluate interference utilization.

For an arbitrary wireless ad hoc network with a certain
nodal distribution, we aim to answer the following questions:

1. What is the greatest amount of information capable of

being carried per unit bandwidth over a given wireless

ad hoc network under a certain transmitting power as-

signment? Theorem 1 gives the maximum capacity.

2. How does the capacity of a wireless ad hoc network vary

with the total transmitting power? Theorem 2 shows
that the maximum capacity strictly increases with the
total transmitting power under a fixed-proportion as-
signment. However, increasing the transmitting power
of one node does not necessarily increase the capacity
of the entire network.

3. Is there a limit to the maximum capacity while the total

transmitting power approaches infinity? Theorem 3
says “yes”, if there are at least two nodes transmitting
simultaneously. Theorem 3 also presents the limit.

4. What is the maximum amount of information that can

be carried per unit energy? Theorem 4 provides the
maximum power efficiency in the sense of network ca-
pacity, which is achieved when the total transmitting
power approaches zero.

5. In the sense of network capacity, how does the power

efficiency vary with the total transmitting power? The-
orem 5 demonstrates that the power efficiency strictly
decreases with respect to the total transmitting power
under a fixed-proportion assignment.

6. What is the scaling law that the quantitative results

imply? Theorem 6 shows that the maximum capac-
ity follows an O(n) scaling law, where n is the num-
ber of nodes, which coincides very well with previous
asymptotic results (Gupta and Kumar [5], Xie and Ku-
mar [22]).

The rest of the paper is organized as follows: In Section 2,
we summarize related work. In Section 3, we introduce pre-
liminaries necessary for a clear understanding of this paper,
including assumptions, notations, and definitions. In Sec-
tion 4, we give the main results regarding the maximum
network capacity and power efficiency. Following that, we
present proofs of all results in Section 5. We highlight the
practical implications of those results in Section 6. Finally,
we conclude this paper in Section 7.

2. RELATED WORK
Narayanaswamy et al. [14] investigated the effect that the

common-range transmission power has on the capacity of
wireless ad hoc networks. Their analysis was based on a

Protocol Interference Model originally introduced by Gupta
and Kumar [5]. A transmission from node i to j is success-
fully received if dij ≤ r and dkj ≥ (1+∆)r for any other node
k simultaneously transmitting with i, where duv denotes the
Euclidean distance between node u and v, ∆ is a real non-
negative number, r is the common transmission range, and
(1 + ∆)r is usually referred to as the interference range.
The authors proved that the upper bound of the through-
put capacity is inversely proportional to r. This conclusion
paves a theoretical foundation for the COMPOW protocol,
in which the common transmission power is reduced to the
lowest level while preserving connectivity.

On the contrary, Behzad and Rubin [1] concluded that
higher transmission power increases the capacity, indepen-
dent of nodal distribution and traffic pattern. There exists a
relatively maximum power vector that maximizes the capac-
ity, i.e., at least one node uses the maximum transmission
power if the maximum capacity is achieved. As a result, un-
der the special case that the transmission power of all nodes
is assumed to be identical, the capacity is maximized if all
nodes use a common maximum power.

Xie and Kumar [22] carried out an information-theoretical
analysis of the capacity of wireless networks without mak-
ing arbitrary and preconceived assumptions about how they
will operate. Suppose that n nodes are located on a two-
dimensional plane with a minimum separation distance dmin,
and that attenuation of radio signals over a distance d is

modeled as e−γd

dα , where γ ≥ 0 is the absorption constant,
and α > 0 is the path loss exponent. In the media with
γ > 0 or α > 3, it is concluded that the transport capac-
ity follows an O(n) scaling law under the individual power

constraint, and is upper bounded by c(γ,α,dmin)

σ2 P bit-meters
per second, where c(γ, α, dmin) is a constant determined by
(γ, α, dmin), σ2 is the variance of Gaussian noise, and P is
the total transmitted power. According to their results, the
capacity may be proportional to P , and hence may be ar-
bitrarily large as P reaches infinity. However, this is not
necessarily the case in real systems.

Most previous work had not taken energy efficiency into
account. Rodoplu and Meng [17] proposed bits-per-Joule
capacity. Under the one-to-one traffic model in which each
node sends traffic to a randomly chosen destination, the
authors showed that the bits-per-Joule capacity grows as
Ω(( n

log n
)(α−1)/2). Wang et al. [20] analyzed the capacity

and energy efficiency of random wireless ad hoc networks;
however, the result is still asymptotic.

The past several years have seen a lot of research efforts
devoted to capacity analysis [4, 6, 9, 10, 11, 12, 15, 16] since
the seminal work of Gupta and Kumar [5]. However, there is
still limited knowledge regarding the effect that transmitting
power has on the capacity of wireless ad hoc networks.

3. PRELIMINARIES
A wireless ad hoc network can be modeled by a directed

graph G = (V, E), where V is the set of vertices and E is the
set of edges. A vertex u ∈ V represents a wireless node and
an edge (u, v) ∈ E corresponds to a unidirectional wireless
link from node u to v.

For the reader’s convenience, we have listed frequently-
used notations in Table 1. It is important to note that no-
tations, such as (i, j), dij , Pij , Qij , Cij , etc., are legal if and
only if i 6= j.
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3.1 Radio Propagation Model
Both theoretical and measurement-based investigations of

radio propagation models indicate that the average received
signal power decreases with distance under the following
path loss model:

P r(P t, G, d, α) =
G · P t

dα
, (1)

where P r is a function of (P t, G, d, α) which denotes the
received power in Watts, P t is the transmitted power, G
is the gain from transmitter to receiver, d is the Euclidean
distance in meters between the transmitter and receiver, and
α ≥ 2 is the path loss exponent.

There are two points worth noting: First, the path loss
models described by (1) are all large-scale propagation mod-
els. It is obvious that they do not hold for d = 0. They are
only available when d is beyond some far-field distance that
is related to the largest linear dimension of the transmitter
antenna aperture and the carrier wavelength. Second, the
well-known free space model and ground reflection model
(the latter is also known as the two-ray model) can be gen-
eralized to the path loss model. As a result, any conclusion
derived under (1) also holds for the free space model and
ground reflection model.

3.2 Link Capacity Model
The signal-to-interference-plus-noise ratio (SINR) at the

receiver of the link (u, v) can be modeled as

SINRuv =
Suv

Iuv + Nv
,

where Suv is the received signal power over link (u, v), Iuv

is the interference power over (u, v), and Nv is the thermal
noise power at node v’s receiver. Under the path loss model,
we have

Suv =
Guv · Puv

dα
uv

, (2)

where Puv is the transmitting power over link (u, v), 0 ≤
Puv ≤ Pu, Pu :=

∑

j Puj , Guv is the gain from node u to
v, and duv is the Euclidean distance between node u and v.
We also have

Iuv =
∑

j 6=v

Guv · Puj

dα
uv

+
∑

i6=u

∑

j

Giv · Pij

dα
iv

. (3)

We assume that all channels in the network are Gaussian
channels. It is practical to regard all interference as noise
in narrow-band systems. Then, according to the well-known
Shannon’s formula, the capacity of link (u, v) in bps (bits per
second) per unit bandwidth, denoted by Cuv(bps), is given
by

Cuv(bps) = log2(1 + SINRuv).

We also consider the capacity measured in terms of bmps
(bit-meters per second), originally introduced by Gupta and
Kumar [5]. The capacity of link (u, v) in bmps per unit
bandwidth is given by

Cuv(bmps) = duv · Cuv(bps).

Table 1: Frequently-used notations.

Notations Descriptions

Cuv Capacity of link (u, v).

Cu Capacity of node u. Cu :=
∑

v Cuv.

C Network capacity. C :=
∑

uv Cuv.

Cmax
u Cmax

u := max(Cu).

Cmax Cmax := max(C).

duv Euclidean distance between node u and v.

du du :=
∑

v duv.

Guv Gain from node u to v.

Interference power over link (u, v).
Iuv

Iuv =
∑

j 6=v

Guv ·Puj

dα
uv

+
∑

i6=u

∑

j

Giv·Pij

dα
iv

.

Ki
uv Ki

uv :=
dα

uvGiv

Guvdα
iv

.

Muv Muv :=
dα

uv

Guv
Nv.

Nv Thermal noise power at node v.

n Number of nodes.

Puv Transmitting power over link (u, v).

Transmitting power of node u.
Pu

Pu :=
∑

v Puv.

P Total transmitting power. P :=
∑

u Pu.

Quv Quv :=
dα

uv

Guv

(
∑

i
Giv

dα
iv

Pi + Nv

)

=
dα

uv

Guv
Tv.

Suv Received signal power over link (u, v).

Total power at node v’s receiver.
Tv

Tv := Suv + Iuv + Nv =
∑

i
Giv

dα
iv

Pi + Nv.

α Path loss exponent.

Power efficiency or energy efficiency.
η

η := C/P .

ηmax ηmax := max(η).

ζ := (ζ1, ζ2, · · · , ζn),
ζ

where ζi = Pi/P , i = 1 · · ·n.

3.3 Definitions

Definition 1. Power Allocation: The power vector (Puv1 ,
Puv2 , · · · , Puv(n−1)

) is said to be a transmitting power allo-
cation at node u, where Puv ≥ 0 denotes the power allocated
to link (u, v), v 6= u, v = v1, v2, · · · , v(n−1).

Definition 2. Power Assignment: We assume P =
∑

i Pi

and ζi = Pi/P , i.e., 0 ≤ ζi ≤ 1 and
∑

i ζi = 1. Then
Pζ = (P1, P2, · · · , Pn) is said to be a transmitting power
assignment, where ζ = (ζ1, ζ2, · · · , ζn). For simplicity, we
also refer to ζ as the same power assignment.

Definition 3. Fixed-Proportion Power Assignment: Pζ is
said to be a fixed-proportion power assignment if ζ is fixed
while P scales.

Definition 4. Non-monopolized Power Assignment: We
refer to ζi as the power assignment ratio for node i. ζ is
said to be a non-monopolized power assignment if there are
at least two non-zero power assignment ratios in ζ. Other-
wise, ζ is said to be a monopolized power assignment.
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Definition 5. Network Capacity: The capacity of a wire-
less ad hoc network G = (V, E), measured in terms of bps
and in bmps, are respectively defined as

C(bps) :=
∑

(u,v)∈E

Cuv(bps),

C(bmps) :=
∑

(u,v)∈E

Cuv(bmps).

Definition 6. Power Efficiency or Energy Efficiency: The
power efficiency of a network, measured in terms of bpJ (bits
per Joule) and in bmpJ (bit-meters per Joule), is respec-
tively defined as

η(bpJ) :=
C(bps)

P
,

η(bmpJ) :=
C(bmps)

P
,

where P =
∑

u Pu is the total transmitting power.

For brevity, we use C to denote either C(bps) or C(bmps),
and η to denote either η(bpJ) or η(bmpJ). Assume Cmax :=
max(C) and ηmax := max(η). For a given wireless ad hoc
network, this paper aims to provide a fundamental under-
standing of Cmax and ηmax.

4. MAIN RESULTS
In this section, we present the main results of this paper

on Cmax and ηmax over a given wireless ad hoc networks.
The results are concluded from quantitative information-
theoretical analysis under the assumption that all interfer-
ence is essentially regarded as noise.

Theorem 1. Given a wireless ad hoc network G = (V, E),
its maximum capacity per unit bandwidth is

Cmax(bps) =
∑

u∈V

max
v

{

log2

( Quv

Quv − Pu

)

}

, (4)

Cmax(bmps) =
∑

u∈V

max
v

{

duv log2

( Quv

Quv − Pu

)

}

, (5)

where

Quv :=
dα

uv

Guv

(

∑

i

Giv

dα
iv

Pi + Nv

)

.

Since Quv is one of the most important notations in this
paper, we explain its physical meaning as follows: We use
Tv := Suv + Iuv + Nv to denote the total power at node
v’s receiver. It is obvious that all nodes contribute to Tv,
as shown in Fig.1 (a). In reality, Tv = Guv

dα
uv

Quv. In other

words, if Tv were assumed to be totally from node u, the
transmitting power of u would have been Quv, as shown in
Fig.1 (b).

Theorem 1 reveals the maximum amount of information
that can be carried per unit bandwidth over a given wireless
ad hoc network under a certain transmitting power assign-
ment. It also implies what the best power allocation is in the
sense of maximizing network capacity. The following results
are based on Theorem 1.

Theorem 2. Given a wireless ad hoc network G under a

fixed-proportion power assignment ζ, the maximum capacity

Cmax, whether in bps or in bmps, strictly increases with

respect to the total transmitting power P .

v
u


s


t


P
s


P
u


P
t


T
v


(a) All nodes contribute to Tv.

v
u


s


t


Q
u
v

T
v


(b) Quv attenuates to Tv.

Figure 1: The physical meaning of Quv.

Theorem 2 is somewhat similar to the conclusion drawn
by Xie and Kumar[22], and even more similar to Behzad
and Rubin’s conclusion in [1]. However, neither [1] nor [22]
show whether there is a limit to the maximum capacity as
P approaches infinity; Theorem 3 answers this question.

Theorem 3. Given a wireless ad hoc network G = (V, E)
under a non-monopolized fixed-proportion power assignment

ζ, there is a limit to Cmax as P goes to infinity.

lim
P→∞

Cmax(bps) =
∑

u∈V

max
v

{

log2

(

∑

i Ki
uvζi

∑

i Ki
uvζi − ζu

)

}

,

lim
P→∞

Cmax(bmps)

=
∑

u∈V

max
v

{

duv log2

(

∑

i Ki
uvζi

∑

i Ki
uvζi − ζu

)

}

,

where

Ki
uv :=

dα
uvGiv

Guvdα
iv

.

It is rational to believe that the power assignment is non-
monopolized in real systems. Therefore, there is a limit to
the maximum capacity, as given in Theorem 3. As a result,
the power efficiency in the sense of the capacity per Watt
approaches zero as P goes to infinity.

Theorem 4. Given a wireless ad hoc network G = (V, E)
under a fixed-proportion power assignment ζ, the maximum

power efficiency ηmax approaches ηmax
0 while P approaches

zero, where ηmax
0 in bpJ and that in bmpJ can be computed

respectively as follows:

ηmax
0 (bpJ) =

1

ln 2

∑

u∈V

ζu max
v

{

1

Muv

}

,

ηmax
0 (bmpJ) =

1

ln 2

∑

u∈V

ζu max
v

{

duv

Muv

}

,

where

Muv :=
dα

uv

Guv
Nv.

Theorem 4 gives an upper bound of the maximum power
efficiency for a given wireless ad hoc network under a fixed-
proportion power assignment. ηmax

0 is referred to as the
upper bound because Theorem 5 shows that the maximum
power efficiency strictly decreases with respect to the total
transmitting power.
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Theorem 5. Given a wireless ad hoc network G under a

fixed-proportion power assignment ζ, the maximum power ef-

ficiency ηmax, whether in bpJ or in bmpJ , strictly decreases

with respect to the total transmitting power P .

It is interesting to derive an asymptotic result from our
quantitative analysis. For comparison with previous work,
the following theorem gives a scaling law.

Theorem 6. Suppose that n nodes are located on a plane

with a minimum separation distance dmin. If we assume

that Pu ≤ Pmax for any node u, Guv = 1 for any link (u, v),
and Nv = N for any node v, then we have

Cmax(bps) ≤ 1

ln 2
· Pmax · n

dα
minN

= O(n),

Cmax(bmps) ≤ 1

ln 2
· Pmax · n

dα−1
minN

= O(n).

Gupta and Kumar [5] showed that the transport capacity

is of order O(
√

An), where A is the area of the deployment
region. Under the reasonable assumption that A = Θ(n),

the scaling law is O(
√

An) = O(n). Xie and Kumar [22] also
concluded that the transport capacity follows an O(n) scal-
ing law. Therefore, our quantitative results coincide very
well with previous asymptotic conclusions. In comparison
with asymptotic results, quantitative results provide more
insights. We highlight the practical implications in Sec-
tion 6.

5. PROOFS
In this section, we give proofs of the results presented in

Section 4. We begin with three lemmas, followed by detailed
proofs of all the theorems.

5.1 Three Lemmas

Lemma 1. The capacity of a link (u, v) per unit bandwidth

in bps is

Cuv(bps) = log2

( Tv

Tv − Suv

)

= log2

( Quv

Quv − Puv

)

,

where

Tv := Suv + Iuv + Nv =
∑

i

Giv

dα
iv

Pi + Nv,

Quv :=
dα

uv

Guv

(

∑

i

Giv

dα
iv

Pi + Nv

)

.

Proof. Since Tv := Suv + Iuv + Nv, substituting (2) and
(3) for Suv and Iuv, respectively, yields

Tv =
Guv · Puv

dα
uv

+
∑

j 6=v

Guv · Puj

dα
uv

+
∑

i6=u

∑

j

Giv · Pij

dα
iv

+ Nv

=
Guv · ∑j Puj

dα
uv

+
∑

i6=u

Giv · ∑j Pij

dα
iv

+ Nv

=
∑

i

Giv

dα
iv

Pi + Nv.

Then, we have

Tv =
Guv

dα
uv

Quv. (6)

Under the assumption that all interference is essentially
regarded as noise, we have

Cuv(bps) = log2(1 + SINRuv) = log2

(

1 +
Suv

Iuv + Nv

)

= log2

( Suv + Iuv + Nv

Suv + Iuv + Nv − Suv

)

.

Since Suv + Iuv + Nv = Tv, we have

Cuv(bps) = log2

( Tv

Tv − Suv

)

. (7)

Substituting (2) and (6) in (7) yields

Cuv(bps) = log2

( Quv

Quv − Puv

)

. (8)

Lemma 2. If Pu is fixed for each node u, then we have

Cmax =
∑

u Cmax
u , whether in bps or in bmps, where

Cmax
u := max(Cu), Cu :=

∑

v Cuv.

Proof. For each node u, if Pu is fixed, according to (7),
we have the observation that power allocation at any other
node w 6= u does not affect the capacity of link (u, v) because
Tv is independent of power allocation. That is to say, Cu is
independent of any other Cw 6=u under a certain transmitting
power assignment. Therefore, Cmax =

∑

u Cmax
u , whether

in bps or in bmps.

Lemma 3. If ζ is a non-monopolized power assignment,

then
∑

i Ki
uvζi − ζu > 0 for any u.

Proof. Because Ki
uv :=

dα
uvGiv

Guvdα
iv

, we have

Ku
uv =

dα
uvGuv

Guvdα
uv

= 1.

Therefore,
∑

i

Ki
uvζi − ζu =

∑

i6=u

Ki
uvζi + Ku

uvζu − ζu =
∑

i6=u

Ki
uvζi.

(9)

Since ζ is a non-monopolized power assignment, accord-
ing to Definition 4, there are at least two non-zero power
assignment ratios, say ζi1 and ζi2 . Then,

∑

i6=u

Ki
uvζi ≥ min{Ki1

uvζi1 , Ki2
uvζi2} > 0. (10)

Combining (9) and (10) yields
∑

i Ki
uvζi − ζu > 0 for any

node u.

5.2 Proof of Theorem 1

Proof. At first, we maximize Cu(bmps) for each node u
subject to

∑

v Puv = Pu. Suppose

fuv(x) := duv log2

( Quv

Quv − x

)

, (11)

fu(x) := max
v

(

fuv(x)
)

, (12)

where 0 ≤ x < Qum, Qum := minv{Quv}. Because

∂2fuv(x)

∂x2
=

duv

ln 2 · (Quv − x)2
> 0,
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fuv(x) is a convex function of x. It is not difficult to prove
that fu(x) is also convex with respect to x.

Suppose that l(x) is the line across point (0, fu(0)) and
point ((x1 + x2), fu(x1 + x2)). In reality, fu(0) = 0. Then,
the equation of l(x) is

l(x) =
fu(x1 + x2)

x1 + x2
x,

where x1 ≥ 0, x2 ≥ 0, 0 < x1 + x2 < Qum. Because fu(x) is
convex, we have fu(x) ≤ l(x). Since

fu(x1) + fu(x2) ≤ l(x1) + l(x2)

=
fu(x1 + x2)

x1 + x2
x1 +

fu(x1 + x2)

x1 + x2
x2

= fu(x1 + x2),

we have fu(x1) + fu(x2) ≤ fu(x1 + x2).
By inductive reasoning, it is easy to conclude

k
∑

i=1

fu(xi) ≤ fu

(

k
∑

i=1

xi

)

. (13)

According to the definition of fuv (11), we have

Cu(bmps) =
∑

v

duv log2

( Quv

Quv − Puv

)

=
∑

v

fuv(Puv).

According to (12) and (13), we have

Cu(bmps) ≤
∑

v

fu(Puv) ≤ fu

(

∑

v

Puv

)

= fu(Pu).

It is easy to know that fu(Pu) is the tight upper bound of
Cu. That is

Cmax
u (bmps) = fu(Pu). (14)

Substituting the definition of fu in (14) yields

Cmax
u (bmps) = max

v

{

duv log2

( Quv

Quv − Pu

)

}

.

Since Lemma (2) says Cmax =
∑

u Cmax
u , we have

Cmax(bmps) =
∑

u∈V

max
v

{

duv log2

( Quv

Quv − Pu

)

}

.

Similarly, we have

Cmax(bps) =
∑

u∈V

max
v

{

log2

( Quv

Quv − Pu

)

}

.

5.3 Proof of Theorem 2

Proof. According to Theorem 1, we have the maximum
per-unit-bandwidth capacity in bmps as follows:

Cmax(bmps) =
∑

u∈V

max
v

{

duv log2

( Quv

Quv − Pu

)

}

.

For each node u, we assume that mu is such a node that

dumu log2

( Qumu

Qumu − Pu

)

= max
v

{

duv log2

( Quv

Quv − Pu

)

}

.

Hence,

Cmax(bmps) =
∑

u∈V

dumu log2

( Qumu

Qumu − Pu

)

. (15)

It is obvious that Cmax(bmps) is continuous and piecewise
derivable. If Cmax(bmps) is derivable at P , then we have

∂Cmax(bmps)

∂P
=

∑

u

dumu

Qumu

∂Pu

∂P
− Pu

∂Qumu

∂P
ln 2 · Qumu(Qumu − Pu)

. (16)

According to the definition of Quv, we have

Quv =
dα

uv

Guv

(

∑

i

Giv

dα
iv

Pi + Nv

)

=
∑

i

dα
uvGiv

Guvdα
iv

ζiP +
dα

uv

Guv
Nv.

Since Ki
uv :=

dα
uvGiv

Guvdα
iv

and Muv :=
dα

uv

Guv
Nv, we have

Quv =
∑

i

Ki
uvζiP + Muv. (17)

Therefore,

Qumu =
∑

i

Ki
umu

ζiP + Mumu , (18)

∂Qumu

∂P
=

∑

i

Ki
umu

ζi. (19)

Hence, we have

Qumu

∂Pu

∂P
− Pu

∂Qumu

∂P

= Qumuζu − ζuP
∑

i

Ki
umu

ζi

= ζu

(

Qumu −
∑

i

Ki
umu

ζiP
)

. (20)

Substituting (18) in (20) yields

Qumu

∂Pu

∂P
− Pu

∂Qumu

∂P
= ζuMumu . (21)

Substituting (21) in (16) yields

∂Cmax(bmps)

∂P
=

1

ln 2

∑

u

ζudumuMumu

Qumu(Qumu − Pu)
. (22)

It is easy to see that (Qumu − Pu) > 0. Therefore,

∂Cmax(bmps)

∂P
> 0.

Similarly, if Cmax(bps) is derivable at P , we have

∂Cmax(bps)

∂P
> 0.

As a result, both Cmax(bps) and Cmax(bmps) strictly in-
crease at each derivable piece. Since Cmax(bps) and
Cmax(bmps) are continuous and piecewise derivable, the
maximum capacity, whether in bps or in bmps, strictly in-
creases with respect to the total transmitting power P .

5.4 Proof of Theorem 3

Proof. Substituting (17) in (5) yields

Cmax(bmps) =
∑

u∈V

max
v

{

duv log2

( Quv

Quv − Pu

)

}
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=
∑

u∈V

max
v

{

duv log2

(

∑

i Ki
uvζiP + Muv

∑

i Ki
uvζiP + Muv − ζuP

)

}

=
∑

u∈V

max
v

{

duv log2

(

∑

i Ki
uvζi + Muv

P
∑

i Ki
uvζi + Muv

P
− ζu

)

}

.

Therefore,

lim
P→∞

Cmax(bmps)

=
∑

u∈V

max
v

{

duv log2

(

∑

i Ki
uvζi

∑

i Ki
uvζi − ζu

)

}

. (23)

Similarly, we have

lim
P→∞

Cmax(bps)

=
∑

u∈V

max
v

{

log2

(

∑

i Ki
uvζi

∑

i Ki
uvζi − ζu

)

}

. (24)

Since ζ is a non-monopolized power assignment, according
to Lemma 3, we have

∑

i Ki
uvζi − ζu > 0 for any u, which

implies that the denominator in (23) and (24) is not zero,
i.e., there is a limit.

5.5 Proof of Theorem 4

Proof.

ηmax
0 (bmpJ) = lim

P→0

Cmax(bmps)

P
= lim

P→0

∂Cmax(bmps)

∂P
.

(25)

Substituting (22) in (25) yields

ηmax
0 (bmpJ) = lim

P→0

1

ln 2

∑

u

ζudumuMumu

Qumu(Qumu − Pu)
.

Because

lim
P→0

Qumu = lim
P→0

(

∑

i

Ki
umu

ζiP + Mumu

)

= Mumu ,

lim
P→0

Pu = 0,

we have

ηmax
0 (bmpJ) =

1

ln 2

∑

u

ζudumu

Mumu

.

When P 6= 0, mu is such a node that

fumu = max
v

{fuv},

where

fuv = duv log2

Quv

Quv − Pu
.

It is obvious that fuv = 0 if P = 0. Therefore, while
P → 0, mu is such a node that

∂fumu(P = 0)

∂P
= max

v

{

∂fuv(P = 0)

∂P

}

.

Because

∂fuv(P = 0)

∂P
=

ζuduv

ln 2 · Muv
,

we have

ηmax
0 (bmpJ) =

1

ln 2

∑

u

ζu max
v

{

duv

Muv

}

.

Similarly, we have

ηmax
0 (bpJ) =

1

ln 2

∑

u

ζu max
v

{

1

Muv

}

.

5.6 Proof of Theorem 5

Proof. It is easy to see that ηmax is also continuous and
piecewise derivable since ηmax = Cmax

P
. If ηmax is derivable

at P , we have

∂ηmax

∂P
=

1

P
· ∂Cmax

∂P
− 1

P 2
· Cmax. (26)

Substituting (15) and (22) in (26) yields

∂ηmax(bmpJ)

∂P
=

1

ln 2 · P
∑

u

ζudumuMumu

Qumu(Qumu − Pu)

− 1

P 2

∑

u

dumu log2

( Qumu

Qumu − Pu

)

=
1

ln 2 · P 2

∑

u

PudumuMumu

Qumu(Qumu − Pu)

+
1

ln 2 · P 2

∑

u

dumu ln
(

1 − Pu

Qumu

)

.

That can be expressed as

∂ηmax(bmpJ)

∂P
=

1

ln 2 · P 2

∑

u

Pudumuhumu , (27)

where

humu =
Mumu

Qumu(Qumu − Pu)
+

1

Pu
ln

(

1 − Pu

Qumu

)

. (28)

According to the well-known Taylor’s Formula, we have

ln(1 − x) = −x − x2

2
− x3

3
− · · · − xk

k
− o(xk)

= −x
(

1 +
x

2
+

x2

3
+ · · · + xk−1

k
+ o(xk−1)

)

≤ −x
(

1 +
x

2
+

x2

22
+ · · · + xk−1

2k−1
+ · · ·

)

= − 2x

2 − x
.

That is to say, for any x ∈ [0, 1), we have

ln(1 − x) ≤ − 2x

2 − x
. (29)

It is easy to know that 0 ≤ Pu

Qumu
< 1. Then, substituting

x = Pu

Qumu
in (29) yields

ln
(

1 − Pu

Qumu

)

≤ − 2Pu

2Qumu − Pu
. (30)

Combining (28) and (30) yields

humu ≤ Mumu

Qumu(Qumu − Pu)
− 2

2Qumu − Pu

=
2Qumu(Pu + Mumu − Qumu) − PuMumu

Qumu(Qumu − Pu)(2Qumu − Pu)
. (31)
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According to the definition of Qumu , we have

Pu + Mumu − Qumu

= Pu + Mumu −
∑

i

Ki
umu

Pi − Mumu

= −
∑

i6=u

Ki
umu

Pi. (32)

Since Pi ≥ 0, Ki
umu

> 0, and
∑

i Pi = P > 0, we have
∑

i6=u Ki
umu

Pi > 0 if Pu = 0,
∑

i6=u Ki
umu

Pi ≥ 0 if Pu > 0.
(33)

Combining (32) and (33) yields

Pu + Mumu − Qumu < 0 if Pu = 0,
Pu + Mumu − Qumu ≤ 0 if Pu > 0.

Since Qumu > 0, we have

2Qumu(Pu + Mumu − Qumu) < 0 if Pu = 0,
2Qumu(Pu + Mumu − Qumu) ≤ 0 if Pu > 0.

(34)

Since Mumu > 0, we also have

−PuMumu = 0 if Pu = 0,
−PuMumu < 0 if Pu > 0.

(35)

According to (34) and (35), we have

2Qumu(Pu + Mumu − Qumu) − PuMumu < 0. (36)

Combining (31) and (36) yields

humu < 0. (37)

Because P > 0, a node i exists such that Pi > 0. Then,
combining (27) and (37), we have

∂ηmax(bmpJ)

∂P
< 0.

Similarly, if ηmax(bpJ) is derivable at P , we have

∂ηmax(bpJ)

∂P
< 0.

As a result, both ηmax(bpJ) and ηmax(bmpJ) strictly de-
crease at each derivable piece. Since ηmax(bpJ) and
ηmax(bmpJ) are continuous and piecewise derivable, the max-
imum power efficiency, whether in bpJ or in bmpJ , strictly
decreases with respect to the total transmitting power P .

5.7 Proof of Theorem 6

Proof.

log2

( Quv

Quv − Pu

)

= − log2

(Quv − Pu

Quv

)

= − log2

(

1 − Pu

Quv

)

= − 1

ln 2
· ln

(

1 − Pu

Quv

)

. (38)

According to the well-known Taylor’s formula, we have

ln(1 − x) = −x − x2

2
− x3

3
− x4

4
− x5

5
− · · · . (39)

Substituting x = Pu

Quv
in (39) yields

ln
(

1 − Pu

Quv

)

= − Pu

Quv
− P 2

u

2Q2
uv

− P 3
u

3Q3
uv

− P 4
u

4Q4
uv

− · · · .

(40)

Substituting (40) in (38) yields

log2

( Quv

Quv − Pu

)

=
1

ln 2
·
( Pu

Quv
+

P 2
u

2Q2
uv

+
P 3

u

3Q3
uv

+ · · ·
)

≤ 1

ln 2
·
( Pu

Quv
+

P 2
u

Q2
uv

+
P 3

u

Q3
uv

+ · · ·
)

.

Since Pu

Quv
< 1, we have

log2

( Quv

Quv − Pu

)

≤ 1

ln 2
·
(

Pu

Quv

1 − Pu

Quv

)

=
1

ln 2
· Pu

Quv − Pu
.

Therefore,

duv log2

Quv

Quv − Pu
≤ 1

ln 2
· duvPu

Quv − Pu
. (41)

Substituting the definition of Quv in (41) yields

duv log2

( Quv

Quv − Pu

)

≤ 1

ln 2
· duvPu

dα
uv

Guv

(

∑

i
Giv

dα
iv

Pi + Nv

)

− Pu

.

Since we assume Guv = 1 for any link (u, v) and Nv = N
for any node v, we have

duv log2

( Quv

Quv − Pu

)

≤ 1

ln 2
· duvPu

dα
uv

(

∑

i
1

dα
iv

Pu + N
)

− Pu

=
1

ln 2
· duvPu
(

∑

i

dα
uv

dα
iv

)

Pu − Pu + dα
uvN

≤ 1

ln 2
· duvPu

dα
uvN

=
1

ln 2
· Pu

dα−1
uv N

.

Since duv ≥ dmin and Pu ≤ Pmax, we have

max
v

{

duv log2

( Quv

Quv − Pu

)

}

≤ 1

ln 2
· Pmax

dα−1
minN

. (42)

Combining (42) and (5) yields

Cmax(bmps) ≤
∑

u∈V

( 1

ln 2
· Pmax

dα−1
minN

)

=
1

ln 2
· Pmax · n

dα−1
minN

= O(n). (43)

Similarly, we have

Cmax(bps) ≤ 1

ln 2
· Pmax · n

dα
minN

= O(n). (44)

6. PRACTICAL IMPLICATIONS
The theoretical analysis has drawn some conclusions on

the effect of transmitting power on the capacity of wireless
ad hoc networks composed of a certain number of nodes.
The quantitative results are more meaningful than the pre-
vious asymptotic results. In this section, we highlight the
practical implications of our results regarding power alloca-
tion, power assignment, and transmission scheduling.
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6.1 Power Allocation
Definition 1 states that the power allocation at a node u

refers to the allocation of u’s transmitting power Pu for each
link (u, v), where v ∈ V, v 6= u. Under some ideal assump-
tions, one node might be capable of unicasting to more than
one neighbor, which would pose the power allocation prob-
lem. Although this is not necessarily the case at present,
insights into power allocation may shed some light on the
study of transmission scheduling and packet routing.

Theorem 1 gives Cmax, the upper bound on network ca-
pacity for a certain power assignment, which implies the best
power allocation.

Corollary 1. For each node u in a given wireless ad

hoc network, the best power allocation insofar as maximizing

network capacity in bps is concerned is:

Pum = Pu,

Puv = 0 for any v 6= m,

where m is such a node that Qum = minv{Quv}.

Corollary 2. For each node u in a given wireless ad

hoc network, the best power allocation insofar as maximizing

network capacity in bmps is concerned is:

Pum = Pu,

Puv = 0 for any v 6= m,

where m is such a node that

dum log2

( Qum

Qum − Pu

)

= max
v

{

duv log2

( Quv

Quv − Pu

)

}

.

According to the results on optimal power allocations, we
observe that 1) it would not be a good idea to unicast si-
multaneously to more than one neighbor in narrow-band
systems, even though the node is capable of doing it; and
2) the best next-hop (i.e. node m in the corollaries) insofar
as maximizing network capacity is concerned is not neces-
sarily the nearest neighbor. This may be worthy of further
consideration from wireless network designers.

6.2 Power Assignment
Power assignment, range assignment, power control, and

topology control all have much in common. These issues
have attracted a significant amount of research interest over
the past decade. Even so, there is still limited information
concerning our understanding of the effect that transmitting
power has on the capacity of wireless ad hoc networks.

Behzad and Rubin [1] argued that higher transmission
power increases the capacity of wireless ad hoc networks.
In reality, their result is the same as Theorem 2 in this pa-
per. So, does higher transmitting power always increase
network capacity? We will proceed to clarify this statement
by using an example to show that this is not necessarily
the case. We consider a network on the plane, as shown in
Fig.2. Nodes 1 to 8 are uniformly placed on the circle cen-
tered at node 0 with r = 1000m as its radius. We assume
α = 3, Guv = 1 for any link (u, v), Pu = 100mW , and Nu =
10−7mW for any node u. According to Theorem 1, it is
easy to write a program to compute the maximum per-unit-
bandwidth capacity. For our example, we have Cmax(bps) =
4.206507 and Cmax(bmps) = 3267.208872. If we increase P0

from 100mW to 120mW , we have Cmax(bps) = 4.122036

0
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8


Figure 2: Higher transmitting power

does not necessarily increase the capac-

ity of the entire network.

and Cmax(bmps) = 3211.339561. Therefore, increasing the
transmitting power of one node does not necessarily increase
the capacity of the entire wireless ad hoc network.

We want to determine what the best power assignment is.
Unfortunately, according to our results, no practical power
assignment exists insofar as maximizing Cmax or maximiz-
ing ηmax is concerned. Theorem 2 states that Cmax strictly
increases with respect to the total transmitting power under
a fixed-proportion assignment, while Theorem 5 shows that
ηmax strictly decreases. There is a tradeoff between Cmax

and ηmax. Power assignment needs further research.

6.3 Transmission Scheduling
According to the quantitative study of Cmax, we believe

that transmission scheduling plays a more important role
than power assignment in improving the capacity of wire-
less ad hoc networks. This is intuitively the case because
transmission scheduling can significantly reduce radio inter-
ference. In reality, transmission scheduling has drawn an
increasing amount of research interest [2, 3, 13, 19, 23].
However, to the best of our knowledge, no previous work
on transmission scheduling is based on the computation of
the maximum network capacity. The quantitative results of
this paper could potentially be utilized for the optimization
of transmission scheduling.

Given a certain transmission scheduling and power as-
signment, Theorem 1 provides a centralized computation of
Cmax (and hence, ηmax) in O(n3) time, where n is the num-
ber of nodes. Since its applicability is not very obvious due
to the computational complexity, we present a further dis-
cussion. In the theoretical analysis, we assume that there is
a link between any two nodes, regardless of how bad the link
is. In practice, we do not need to take all links into account.
Cmax can be approximately computed by neglecting bad
links. Furthermore, not every node needs to consider the
interference from distant nodes. In other words, the capac-
ity of each node can be maximized locally. Since Lemma 2
states that Cmax is the sum of the maximum capacity of
all nodes, the Cmax (and hence, ηmax) of a given network
can be optimized in a localized manner. This observation
sheds light on some practical implications. Therefore, the
results of this paper may be of interest to designers seek-
ing to develop transmission scheduling algorithms as well as
MAC protocols.
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7. CONCLUSIONS
Under the assumption that all interference is essentially

regarded as noise, we have quantitatively investigated the ef-
fect that transmitting power has on network capacity from a
perspective of information theory. We have given the max-
imum capacity of a wireless ad hoc network under a cer-
tain power assignment and nodal distribution, disregarding
the manner in which the network operates. For a fixed-
proportion power assignment, we have shown that the max-
imum capacity strictly increases with respect to the total
transmitting power, and that there is a limit as the total
transmitting power reaches infinity. Although higher trans-
mitting power may well increase the capacity of wireless ad
hoc networks, we demonstrate that this is not necessarily
the case if transmitting powers are not proportionally in-
creased. We have also proved that the maximum power
efficiency in the sense of network capacity strictly decreases
with the total transmitting power under a fixed-proportion
assignment. We have further highlighted the practical impli-
cations for power allocation, power assignment, and trans-
mission scheduling. Since the maximum capacity at any
time can be optimized in a localized manner, the results of
this paper may be of interest to designers seeking to develop
networking algorithms and protocols.
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